Friday fold: Mars Hill terrane

Today’s Friday Fold comes to us via Pete Berquist of Thomas Nelson Community College in Hampton, Virginia. Check it out: Pete explains what’s going on here: I cannot provide an exact location but this is within the Mars Hill Terrane (MHT), which is an distinctive swath of Mesoproterzoic basement extending ~50 km x 100 km … Read more

Drilling: what, why, and how

As mentioned, I spent a significant part of last weekend was spent on a paleomagnetic sampling project with collaborators from the University of Michigan. On Friday, this was our field area: That’s the south slopes of Old Rag Mountain, a popular Blue Ridge hiking destination because unlike many Virginia peaks, when you get to the … Read more

Scenes from a drill campaign

The past couple of days, I’ve been in the field, collecting samples with Dr. Fatim Hankard, a post-doctoral researcher from the University of Michigan, and Matt Domeier, a PhD candidate from that same fine school. We’re interested in using Virginia’s wealth of Catoctin formation feeder dikes to do paleomagnetism measurements that might help us constrain … Read more

Harpers Foldry

Cleaning out the backlog of photos I haven’t popped up here yet… Here’s three shots from last weekend, of folds (some kinky) which deform Harpers Formation foliation, just south of Harpers Ferry, West Virginia: The Harpers is a Cambrian-aged lagoonal mudrock, dated via Olenellus trilobites in Pennsylvania. It is part of a transgressive sequence that … Read more

Overturned bedding at Maryland Heights

The Lilster & I drove out to Harpers Ferry, West Virginia, today, and crossed the Potomac River to hike up to the overlook at “Maryland Heights,” which is what they call the Blue Ridge north of the river. On the way uphill, I noticed this nice example of Harpers Formation bedding and cleavage dipping in … Read more

"Geology of Skyline Drive" w/JMU

I mentioned going out in the field last Thursday with Liz Johnson‘s “Geology of Skyline Drive” lab course at James Madison University. We started the trip south of Elkton, Virginia, at an exposure where Liz had the students collect hand samples and sketch their key features. Here’s one that I picked up: Regular readers will … Read more

"Those aren't pillows!"

In the 1987 comedy Planes, Trains, and Automobiles, John Candy and Steve Martin have a funny experience. It involves a cozy hotel room (one bed only) and the two travelers are huddled up for warmth. As he wakes up, John Candy thinks he is warming his hand “between two pillows.” At hearing this, Steve Martin’s … Read more

3,2,1, Contact!

On my structure field trip just over a week ago, we found the contact between the Mesoproterozoic-aged Blue Ridge basement complex and the overlying Neoproterozoic Catoctin flood basalts (now metamorphosed to greenstone). This nonconformity can be found just west of the Appalachian Trail at the Little Stony Man parking area in Shenandoah National Park. Here’s … Read more

Sugarloaf

Sunday morning, NOVA adjunct geology instructor Chris Khourey and I went out to Sugarloaf Mountain, near Comus, Maryland, to poke around and assess the geology. Sugarloaf is so named because it’s “held up” by erosion-resistant quartzite. It’s often dubbed “the only mountain in the Piedmont,” which refers to the Piedmont physiographic province. Here’s a map, … Read more

Transect debrief 8: late brittle deformation

The final chapter in our Transect saga is now here. In some ways, it’s the least thrilling of the bunch. On the other hand, when I see a nice example of this structure, it makes me squeal like a little girl. I refer, of course, to plumose structure, the small-scale architecture of a joint surface. … Read more

Transect debrief 7: Brittle-ductile deformation

On the transect trip, I also saw some nice meso-scale “minor” structures that probably formed during Alleghanian deformation. Prominent among the ones that really impressed me were these en echelon tension gash arrays, deforming the Antietam Formation quartz sandstone and well exposed in blocks used to construct the wall along Skyline Drive and the Sandy … Read more

Transect debrief 6: folding and faulting

Okay; we are nearing the end of our Transect saga. During the late Paleozoic, mountain building began anew, and deformed all the rocks we’ve mentioned so far. This final phase of Appalachian mountain-building is the Alleghanian Orogeny. It was caused by the collision of ancestral North America with the leading edge of Gondwana. At the … Read more

Transect debrief 4: transgression, passive margin

…So where were we? Ahh, yes: an orogeny, and then some rifting. What happened next to Virginia and West Virginia? Let’s consult the column… After the rifting event opened up the Iapetus Ocean, seafloor spreading took place and tacked fresh oceanic crust onto the margin of the ancestral North American continent. As North America (“Laurentia”) … Read more

Transect debrief 3: Rodinian rifting

The Grenville Orogeny, responsible for Virginia’s basement complex, was one mountain-building event among many that helped put together a Mesoproterozoic supercontinent called Rodinia. But Rodinia didn’t last: it broke apart during the Neoproterozoic to form the Iapetus Ocean basin. This rifting event is recorded in Virginia’s Blue Ridge province in the Swift Run Formation and … Read more

Transect debrief 2: weathering the Grenvillian landscape

From the basement complex, the next unit up in the Blue Ridge province’s stratigraphic sequence is the Swift Run Formation. It rests atop an erosional unconformity. After the Grenville Orogeny (~1.1 Ga) added a swath of new crust along the margin of the North American continent, the landscape began to weather and erode. Eventually, an … Read more

Transect debrief 1: starting in the basement

It is time to debrief the post-NE/SE-GSA field trip that I went on, affectionately dubbed the “Transect Trip” for the past 27 iPhone-uploaded “live”-geoblogged posts. First off, I’d have to say that I enjoyed the live-field-blogging experiment overall, though I’ve got some critiques of the process and products. I think it’s amazing that I can … Read more